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Caflisch & Luke (1985) showed that, owing to the long range of the hydrodynamic 
interactions, the variance of the sedimentation velocity in a random suspension with 
uniform probability for the positions of the particles is divergent in the sense that i t  
grows without bound as the macroscopic linear dimension of the settling vessel is 
increased. It is shown here, however, that a Debye-like screening of a particle’s 
velocity disturbance, leading to  a finite variance, will occur if the pair probability 
reflects a net deficit of one particle in the vicinity of each particle. The three-particle 
interactions, which determine the structure of a dilute, monodisperse suspension of 
spheres, lead to  a deficit of neighbouring particles. The magnitude and range of this 
deficit are shown to be sufficient to lead to a Debye-like screening of the velocity 
disturbance a t  a radial distance of order a4-l, where a is the particle radius and 4 
their volume fraction. A self-consistent approximation to  the screened conditional 
average velocity field and pair distribution is presented. The screening leads to a 
variance of the particle velocity and a particle tracer diffusion coefficient that  are 
finite and of order Us2 and respcctively, where Us is the Stokes settling 
velocity of the particles in unbounded fluid. 

1. Introduction 
The sedimentation of a monodisperse, dilute suspension of non-Brownian particles 

in the absence of inertial effects is one of the basic, simple flows of suspensions. 
Neglecting all interparticle hydrodynamic interactions in the dilute limit would lead 
one to conclude that each particle’s velocity U is equal to the Stokes settling velocity 
Us = 2Apa2g/9p, where Ap is the difference between the density of the particles and 
the fluid, a is the particle radius, p is the fluid viscosity, and g is the acceleration due 
to gravity. 

However, in attempting to calculate the first effects of particle interactions on the 
mean or variance of the sedimentation velocity in a random suspension by directly 
summing, the influence of individual particles, one encounters divergent integrals. 
Batchelor ( 1972) introduced a renormalization that overcame the divergence 
problems inherent in determining the first correction to  the mean sedimentation 
velocity in a dilute, random, monodisperse suspension. He found the average 
sedimentation velocity to be (U) = Us( 1 -6.55#), where 4 is the particle volume 
fraction and ( ) indicates an ensemble average over all possible particle con- 
figurations weighted by the probability of their occurrence. 

Particles in a sedimenting suspension undergo a randomly fluctuating motion 
induced by the hydrodynamic disturbance caused by the surrounding particles. This 
randomly fluctuating motion is important because i t  is expected to  give rise to a 
dispersion or mixing of chemical tracers and of the solid particles themselves. The 
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variance ( U 2 )  of the sedimentation velocity is the simplest measure of the particle 
velocity fluctuations. Here, u’ = U- (U) is the deviation of the particle’s velocity 
from its average value. Caflisch & Luke (1985) showed that Batchelor’s (1972) 
renormalization does not resolve the divergence difficulties associated with 
calculating the variance of the Sedimentation velocity. Indeed, they showed that the 
variance, ( V 2 )  = O( Us2q5L/a), grows in proportion to the characteristic linear 
dimension L of the settling vessel. 

The divergence in the variance of the sedimentation velocity is particularly 
disturbing in view of the relationship of the solid-particle tracer diffusivity to the 
velocity variance. The diffusivity is given by a time integral of the particle’s velocity 
correlation function, so it cannot be expected to be independent of L / a  (and thus 
finite as L/a+co) if the variance of the particle’s settling velocity is not also finite 
as L/a+co. A similar divergence arises if one attempts to calculate the effective 
diffusivity of a tracer in the suspending fluid of a random sedimenting suspension. 
Indeed Koch & Brady (1985) noted that any attempt to calculate the effective tracer 
diffusivity resulting from a random array of point forces of fixed magnitude leads to 
a divergent integral. 

The variance of the fluid velocity and the effective tracer diffusivity are both well 
defined and independent of bed size in a random array of fixed particles (Koch & 
Brady 1985). The important difference between a random fixed array and a random 
sedimenting suspension is that in the fixed bed the particle velocities are maintained 
(at zero) and the forces acting on them are influenced by hydrodynamic interactions, 
while in a sedimenting suspension each particle’s force is fixed (as the force of gravity 
acting on the particle’s mass) and its velocity depends on hydrodynamic interactions. 
In a fixed bed the fluid velocity disturbance caused by a given particle will affect the 
external force required to keep the other particles fixed. This leads to a body force 
in the conditionally averaged momentum equation which is proportional to the 
velocity. Thus, the conditionally averaged velocity disturbance associated with one 
fixed particle satisfies Brinkman’s equation and is screened at a distance a#-$. As a 
result the conditionally averaged velocity disturbance decays like xP3 as the radial 
distance x goes to infinity, and the integrals required to determine the dispersion 
properties mentioned above are convergent. Direct hydrodynamic interactions, 
however, do not give rise to  such screening of the particle velocity disturbance in a 
random sedimenting suspension. 

The aforementioned results pertain to  a random suspension of uniform probability. 
However, unless Brownian motion dominates over hydrodynamic interactions, there 
is no reason to expect that all accessible configurations of the suspension are equally 
probable. Thus, while Batchelor’s (1972) result Us( 1 - 6.5w) for the mean 
sedimentation velocity is applicable to Brownian suspensions, the average sedi- 
mentation velocity will generally depend on the suspension structure. A clear 
indication of this influence of structure is the fact that the first correction to the 
sedimentation velocity in a dilute periodic bed is O(@) (Hasimoto 1959) as opposed 
to the O ( # )  correction in a random suspension with uniform probability. 

It will be seen that a non-uniform suspension structure can have an even more 
profound effect on the variance of the velocity. I n  32 we show that a suspension with 
a certain type of structure (one whose pair probability satisfies equation (2.14)) has 
a finite velocity variance, i.e. the variance is independent of L/a  as L/a+co. 
Physically, the criterion (2.14) corresponds to requiring a net average deficit of one 
particle in the vicinity of any given particle. If this criterion is satisfied, the 
ensemble-averaged velocity disturbance with one particle’s position held fixed is 
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screened in a manner that is analogous to the Debye screening of the electrical 
potential associated with a fixed ion in an ionic solution. It should be noted that the 
analogy between sedimenting suspensions and ionic solutions is limited to the effect 
of the pair probability on the variance of the velocity in the former case and the 
variance of the electrical potential in the latter case. The mechanisms controlling the 
pair probability in these two cases are, of course, different. In an ionic solution there 
is a clear mechanism ~ electrical attraction and repulsion - leading to a structure in 
which the electrical potential is screened. In a sedimenting suspension, it is not 
immediately obvious whether the hydrodynamic interactions that control the pair 
probability will cause a net increase or deficit in the number of particles near any 
given particle. 

In $3  we address the problem of determining the pair probability in a monodisperse 
suspension of spheres. Even in the dilute limit the pair probability is controllcd by 
three-particle interactions, because there is no relative motion between two isolated 
identical spheres. In this sense, sedimenting suspensions of monodisperse spherical 
particles are more difficult to treat theoretically than suspensions of non-spherical or 
polydisperse particles. 

Batchelor & Wen (1982) determined the effect of two-particle interactions on the 
pair probability in a polydisperse suspension of non-Brownian spheres. In a 
polydisperse suspension two isolated particles do move relative to one another, so 
two-particle encounters occur in this case. The structure in the pair probability 
induced by these two-particle interactions is very short in range, decaying like u ~ x - ~  
as x+w. Batchelor & Wen (1982) related the pair probability to an integral along 
a particle trajectory of the divergence of the relative velocity. The non-random 
structure is short range, because the relative velocity is solenoidal except when the 
particles are close enough for multiple hydrodynamic reflections to be important. 

The structure in the pair probability resulting from two-particle encounters in a 
polydisperse suspension decays too quickly with radial separation to affect the 
divergence problems discussed above. In order to obtain a deficit of one neighbouring 
particle in a dilute suspension, leading to Debye-like screening, the pair probability 
must decay at  least as slowly as u3x-3 as x/a+co, so that the integral in (2.14) does 
not converge to an O ( $ )  result within an O(a)  radial separation. In a dilute 
suspension, a non-uniform structure must extend to a radial separation large 
compared with the particle radius before it can constitute an O( 1 )  net average 
particle deficit. Thus, although two-particle encounters occur in polydisperse 
suspensions of spheres, any long-range structure that could affect the divergence of 
the variance and diffusivity can only result from encounters of three or more 
particles. 

In $ 3  we study the effects of three-particle interactions on the pair probability in 
a monodisperse suspension of spheres. It will be seen that the pair probability 
consists of an O(n) short-range contribution and an O(n$) long-range contribution. 
These will be treated in $93.2 and 3.1, respectively. In $3.1.1, we determine the pair 
probability a t  separations x, such that a < x 4 a$-'. From this study it is seen that 
the long-range contribution represents a net deficit of neighbouring particles and has 
sufficient range and magnitude to lead to screening of the velocity disturbance at  a 
radial distance of order a$-'. In $3.1.2, we present a self-consistent theory for the 
screening of the velocity disturbance and the pair probability at an O(a$-') 
separation. In $4, we discuss the effects of the predicted suspension structure on the 
properties of the suspension. 
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2. The effects of structure on suspension properties 
It has been recognized for some time that the direct evaluation of the properties 

of sedimcnting suspension by summing the effects of single particles and small groups 
of particles in a random suspension leads to non-convergent integrals. These 
convergence difficulties arise from the slow decay of the velocity disturbance caused 
by a particle settling in a viscous fluid. Because a particle moving through a fluid 
under the action of a body force acts as a source of momentum, it causes a velocity 
disturbance which decays like x-l as X + C O ,  where x is the radial distance from the 
particle. 

Caflisch & Luke (1985) showed that the finite size of a particle did not affect the 
convergence problems encountered in calculating the variance of the sedimentation 
velocity. Thus, in our discussion we shall adopt a point-particle approximation, in 
which the fluid velocity u and dynamic pressure p* at a point x in the suspension 
satisfy 

N 

-,uV2u+Vp* = CfS(x - r , ) ,  (2.la) 
i = l  

v.u = 0, ( 2 . l b )  

where V is the Nab16 operator, ,u is the fluid viscosity, ri is the position of the ith 
particle, and f = $xu3Apg is the force of gravity acting on a particle. Here, Ap is the 
density difference between the particle and fluid, and g is the acceleration due to 
gravity. In the point-particle approximation the particle velocity U(r,)  is given by 
the sum of the Stokes settling velocity Us of the particle in an unbounded, quiescent 
fluid and the fluid velocity u(rl)  induced by all of the other particles, i.e. excluding 
the direct influence of the particle located at rl, 

where r‘ = x - r l .  The term in the square brackets in (2.2) is the fluid velocity at x 
excluding the direct influence of the particle located a t  rl (Saffman 1973). We shall 
use a number of types of configurational ensemble average in this analysis. ( M ( x ) )  
indicates the unconditional ensemble average of a dependent variable M at a point 
x - the average over the ensemble of all possible configurations of the suspension 
with each configuration weighted by the probability that  it would arise in a physical 
experiment. ( M ) , ( x  I rl) denotes the conditional average, i.e. the average over the 
subensemble of configurations in which a particle is located a t  rl.  ( M ) 2 ( x  I rl, r2)  is the 
conditional average with two particle positions held fixed at rl and r2.  

If one attempts to calculate the influence of surrounding particles on the mean 
sedimentation velocity of a given particle by directly summing the effects of each 
particle separately, one encounters a volume integral of the fluid velocity disturbance 
caused by a particle; this integral diverges like T - ’ ~  as T-’+co. Batchelor (1972) 
overcame this convergence difficulty and calculated the first effects of interparticle 
hydrodynamic interactions on the sedimentation velocity in a dilute, random, 
monodisperse suspension of spheres. In the point-particle approximation Batchelor’s 
renormalization is equivalent to adjusting the reduced pressure p = p* - nfz to 
reflect the increase in the average density of the suspension by an amount n f / g  due 
to the presence of the particles (Saffman 1973). In  the above discussion, z is the 
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vertical coordinate and n is the average number density of particles. Substituting the 
adjusted reduced pressure into (2.la),  one obtains 

i=l 
(2.3) 

Performing the conditional ensemble average of the equations of motion, (2.3) and 
(2.lb), one obtains 

- luV"~),(x I r1) + V<P)l =flg(x I r1) - n +  W-r1)1, ( 2 . 4 ~ )  

V.(u),(xlr1) = 0, (2.4b) 

where g(x I r l )  is the number density of particles a t  x given a particle located at rl. 
Substituting the solution of (2.4) obtained using the fundamental solution of the 
Stokes equations into (2.2), we find that the average particle velocity is 

Far from the particle a t  rl the pair probability g(xlr,) approaches the average 
number density n. If g(x 1 r l )  - n decays faster than r'-2 as r' +a, then the integral 
in the expression (2.5) for the average sedimentation velocity converges. 

In a random suspension of point particles with uniform probability in a volume V ,  
g(x 1 rl) E (N-  l ) / V  x n in the limit N + a  with n = N / V  held fixed. Thus, 

W,) = v, (2.6) 

i.e. the average velocity is the same as the Stokes settling velocity of an isolated 
particle. Note that (2.6) has errors of order # resulting from the neglect of the finite 
size of the particles. Batchelor (1972) accounted for the effects of finite particle size 
and found U = Us( 1 -6 .5w)  in a random, dilute monodisperse array of spheres. It 
should be noted that the correction -6.55q5 applies only to a random array of 
particles with uniform probability. The structures in the non-Brownian suspensions 
studied here arc determined by the hydrodynamic interactions between the particles 
and there is no reason to expect such suspensions to be random with uniform 
probability. Batchelor's (1972) method can be applied to other non-uniform 
structures, but the resulting correction will depend on the structure. 

We shall now examine the problem of determining the variance of the fluid 
vclocity in the suspension. Since the particle velocities are predominately determined 
by long-range interactions for which the point-particle approximation is appropriate, 
the variances of the fluid and particle velocities are equal a t  leading order. The 
variancc of the fluid velocity is, by definition, 

<u2)  = dCNP,(CN) u(x  I cN) 'u(x I c N ) >  (2.7) s 
where PN is the probability density for finding the N particles in the configuration 
C,, and C, denotes the positions of the Nparticles, i.e. rl, r2,  etc. Approximating the 
fluid velocity induced by all N particles as the sum of the conditionally averaged 
velocities with one particle fixed, i.e. 

N N 

i-1 i = l j > i  
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r 

Equation (2.9) is the first approximations to the variance in a dilute suspension. The 
next approximation in this expansion involves the conditionally averaged velocity 
with two-particle positions held fixed. In  the point-particle approximation two- 
particle velocity correlations arise only from thrce-particle position correlations, i.e. 
from g,(x I r2, rl) -g(x I rl) -g(x I rz )  + n, where g3(x I r2, rl) is the particle density a t  x 
when two particle positions are held fixed a t  rl and r2. In  the Appendix, it is shown 
that the errors introduced by the approximation in (2.9) are small in the limit 
q5 + 0. Note that the leading term (2.9) in the asymptotic expansion for the variance 
is affected by the pair probability, despite the fact that it involves only the 
conditionally averaged velocity with one particle fixed, cf. (2.4). 

In  a dilute random array with uniform probability, there are no three-particle 
position correlations so the equality in (2.9) is exact. Furthermore, the pair 
probability is equal to the number density, g(r21r1) = n, in such an array, so the 
second integral in (2.9) is zero and the conditionally averaged velocity (2.4) is simply 
a Stokeslet which decays like x-l with distance x away from the fixed partic1e.i Thus, 
the determination of the variance of the fluid velocity (2.9) in a random array 
requires the evaluation of a volume integral of the square of velocity due to a point 
force in pure fluid. This integral diverges like x as x +OO indicating that the variance 
grows in proportion to the linear dimension of the suspension. Considerations of the 
finite size of the particles do not affect the convergence of (2.9). In  fact, the largest 
effect associated with the finite particle size (which comes from the product of the 
Stokeslet with the potential dipole) makes an O ( X - ~ )  contribution to the integrand in 
(2.7). 

However, it  will now be shown that a suspension with a certain type of structure 
has a finite velocity variance. First note that (2.4) may be solved upon Fourier 
transforming to  obtain 

(2.10) 

where indicates the transform, k is the transform variable corresponding to x - rlr 
and p = g - n is the difference between the pair probability and the number density. 
The Dirac delta function can be used to write the right-hand side of (2.9) in terms of 
a single integral, i.e. 

(u2)  = sdr1dr2n[~(r~-r1 ) -~ (r2 -r1 )1  ( ~ ) l ( ~ l ~ ~ ) . ( ~ ) l ( ~ l ~ ~ ) .  (2.11) 

Using the convolution theorem twice, (2.11) may be written in terms of a single 
integral in Fourier space, i.e. 

(a2)  = n dk [ l - b ( k ) ] ( & ) l ( k ) - ( & ) l ( - k ) .  (2.12) s 
t Strictly speaking the  pair probability in a suspension with uniform probability is g(rz 1 r l )  = 

n - l / V .  However, if we take the limit V+m first (before the limit L + O O ) ,  then g+n .  The 
contribution - 1/Vis  only important for separations 5 comparable with the linear dimension of the 
entire system. With a pair probability g = n- l / V ,  one still obtains an O(iY2Lq5/a) variance, 
although with a different coefficient than tha t  calculated by Caflisch & Luke (1985) who omitted 
the - l / V  term. 
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Finally, substituting (2.10) into (2.12) one finds that the variance is 

If the suspension is random with uniform probability, p = 0, and the integral in 
(2.13) diverges like k-' as k+O, corresponding to a divergence of the real-space 
intcgral in (2.7) like x as x+m. However, if - - 1 +o(k) as k +  0, then the intcgral 
in (2.13) converges and the variance of the fluid velocity is finite. The real-space 
equivalent of this criterion is that 

dx[g(xIO)-n] =-l+o(R,') ,  R, 4 R, 6 L. (2.14) 

Thus, the variance of the velocity has a finite value if and only if there is a net deficit 
of one particle in the suspension surrounding any given particle. We have denoted by 
R, the radius of the region surrounding a given particle in which this net deficit 
exists, i.e. the radial distance a t  which (2.14) converges to - 1. The transform space 
integral in (2.13) converges a t  a wavenumber k - 0 ( R i 1 )  and so the variance is 

J-z<Rt 

(2.15) 

The relationship between the variance of the velocity and the structure of the 
suspension may be explained physically in the following manner. The force of gravity 
acting on a particle acts as a source of downward momentum, so that the velocity 
disturbance due to a particle sedimenting in pure fluid decays like x-' as x+m. 
However, when a particle settles in a suspension in which (2.14) is satisfied, the 
particle is surrounded by a region whose density is smaller than the average density 
of the suspension. This buoyant region acts as a source of upward momentum, which 
balances the downward momentum source in the particle so there is no net 
momentum source. Thus, outside the radial distance R, over which this deficit 
occurs, the conditionally averaged velocity disturbance decays faster than xP1 and 
the integral in (2.13) converges. We shall refer to this phenomenon as screening of the 
velocity disturbance induced by a particle. 

In  order to obtain screening, i t  is essential that the net particle deficit 
surrounding each particle occur within aJinite radial distance R,. This point may be 
explained with reference to  figure 1. Consider a suspension of N particles contained 
in a vessel of volume V .  The integral in (2.14) would be identically equal to - 1 ,  if the 
integral were carried out over the entire volume V of the vessel. This is true because 
by fixing the position of one of the N particles, only N -  1 particles are left to  occupy 
the remaining volume. One can visualize this particle deficit as a 'ghost ' particle. In 
a suspension of uniform probability the ghost particle is equally likely to be found 
at any point in the volume V ,  cf. figure 1 (a) .  However, when (2.14) is satisfied, the 
ghost particle is within a radial distance R, of the fixed particle, cf. figure 1 ( b ) .  The 
screening of the conditionally averaged velocity in figure 1 (b )  occurs when the radial 
distance from the fixed particle is large compared to the radial distance R, over which 
the particle deficit occurs. At such a large radial distance the fixed particle and the 
ghost particle appear to occupy a compact region of space which contains no net 
source of momentum and so the velocity disturbance decays more rapidly than x-'. 
I n  the suspension with uniform probability in figure 1 (a ) ,  the ghost particle is found 
with equal probability throughout the volume V.  In  such a suspension, it is not 



282 D .  L. Koch and E .  S.  G .  Shaqfeh 

T 7 

Ghost 
s-’ particle 
*-. I ,  

8 

Ghost 

\ 1 

FIGURE 1 .  The structure of a suspension of N particles contained in a volume Ti is illustrated. The 
unbroken circle denotes one particle whose position is held fixed in the conditional ensemble 
average. Because one particle’s position has been fixed, only N-1 particles inhabit the remaining 
volume. The one ‘missing’ or ‘ghost’ particle is represented by a circle with dotted lines. The 
structure with and without screening of the particles’ velocity disturbances are respectively 
illustrated by (6) and ( a ) .  

possible to find a point within the suspension a t  which the particle and the ghost 
appear to occupy a compact region of space and the velocity disturbance is not 
screened. If we substitute in (2.15) the linear dimension L of the settling vessel for the 
lengthscale R, over which the particle deficit occurs in a suspension with uniform 
probability, we recover Caflisch & Luke’s (1985) result for the variance of the 
velocity in such a suspension. 

Other physical systems in which particles give rise to long-range fields similar to 
the long-range velocity fields in a sedimenting suspension are an ionic solution and 
an array of bodies with gravitational interactions. The charge of a single ion gives rise 
to an electrostatic potential which decays like x-’ as x+co, and the gravitational 
potential due to a massive object also decays like x-l. As a result the variance of the 
potential in a uniform distribution of either ions or massive objects is not finite. 
However, if the distribution of ions is such that there is an excess of oppositely 
charged ions and/or a deficit of like ions leading to a net counterbalancing opposite 
charge in the vicinity of any given ion, then the electrical potential will be screened. 
In an ionic solution, electrical repulsion and attraction lead to  the net excess of 
oppositely charged ions and deficit of like ions required to yield Debye screening of the 
electrical potential (Lifschitz & Pitaevskii 1981). 

It is not immediately obvious whether hydrodynamic interactions between 
uncharged, sedimenting particles will result in a net deficit or increase in particle 
density near a given particle. This is the primary issue to be addressed in $3  of this 
paper for interactions between sphcrical particles. It will be seen that interactions in 
suspensions of spherical particles do lead to a deficit of neighbouring particles. A self- 
consistent approximation of the process by which the coupling between momentum 
and particle conservation leads to a Debye-like screening is given in $3.1.2.  However, 
in a companion paper (Koch & Shaqfeh 1989), i t  is shown that sedimenting spheroids 
tend to  clump together and that a suspension of such particles is unstable to particle 
number density fluctuations. It appears that the question of whether a suspension is 
stable and has screening or is unstable depends on the details of the particle 
interactions. 
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3. Pair probability 
In this section, we shall study the effects of hydrodynamic interactions on the pair 

probability in a dilute, monodisperse, homogeneous suspension. One would normally 
expect that the pair probability in a dilute suspension would be determined by two- 
particle interactions, encounters between three or more particles being much more 
rare. However, the relative position of two identical sedimenting spheres only 
changes under the influence of a third particle, so one must consider three-particle 
interactions even in the dilute limit. 

In $2  we saw that a non-uniform long-range structure of the pair probability can 
have a large effect on such properties of a sedimenting suspension as the variance of 
sedimentation velocity and the self-diffusivity of the particles. It was shown that, if 
a long-range structure corresponding to a net deficit of one particle in the vicinity of 
each particle exists, namely (2.14), then the velocity disturbance caused by a particle 
is screened and the variance of the settling velocity and the self-diffusivity are finite. 
Equation (2.14) can only be satisfied if the pair probability is smaller than the 
particle number density and decays at least as slowly as 0 ~ 5 ~ ~  as xu-l-tco. 

Because we are primarily interested in the long-range structure of the pair 
probability it might seem reasonable to adopt a point-particle approximation for 
three-particle encounters. In this approximation each particle's velocity is taken to 
be the sum of its Stokes settling velocity and the fluid velocity disturbance induced 
at its position by the other particles treated as point forces (Saffman 1973). One 
would, therefore, neglect the effect of a particle's finite size on the fluid velocity 
disturbance it induces, and the effects of hydrodynamic reflections between particle 
which are only important when the particles' separation is O(a).  

In the absence of Brownian motion, the probability density PN(CN) for the 
positions of a group of N particles satisfies a conservation equation of the form 

(3.1) 

where y is the velocity of the ith particle, W i  is the Nab16 operator with the 
derivatives taken with respect to the position ri of the ith particle. We shall adopt 
the normalization condition of Batchelor (1972), i.e. 

apN N -+ v,. QPN = 0, 
at a-1 

N !  
( N -  k )  ! ' 

(dxl . . . dx, Pk(x,, . . . , x k )  = ~ 

for all k < N .  Because the fluid velocity is solenoidal and the Stokes settling velocity 
is a constant, we have V,. = 0 for all i in the point-particle approximation. As a 
result, a probability density, PN = N ! / V N ,  that is constant independent of r l ,  ... , rN 
or, in other words, random with uniform probability, is a solution of the particle 
conservation equation (3.1).t One particular set of initial and boundary conditions 
that would lead to such a constant solution is an initial condition that PN is a 
constant in a unit cell with periodicity boundary conditions. For example, this 
indicates that if one performs an ensemble of numerical experiments in which N point 
particles are placed randomly with uniform probability in a periodic cell, the 

t This solution is neutrally stable in the following sense. If we add a small disturbance g to the 
probability density l', a t  t = 0,  such that the maximum absolute value of g is less than E ,  the 
maximum absolute value of the disturbance g will remain smaller than E for all subsequent times. 
This simply results from the facts that the equation for P, is a linear first order equation and the 
velocity is incompressible. The problem of determining P, for point particles is equivalent to the 
advection of a passive, non-diffusive tracer by an incompressible flow in a 3N-dimensional space. 

10 FLM 224 
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probability density will remain uniform a t  all subsequent times. Thus, a t  least in this 
case, one must consider interactions in which at  least two of the particles are within 
an O(a) distance of one another, so that the point-particle approximation does not 
apply, in order to obtain a non-uniform structure. 

Caflisch & Luke ( 1986) numerically simulated encounters between three identical 
spherical sedimenting particles, using the point-particle approximation. They then 
attempted to derive some information concerning the pair probability from these 
encounters, by assuming that the pair probability could be written in the form 
g(x 10) = Ph(cos 0), where a is an undetermined constant and O is the angle between 
x and the direction of gravity. Caflisch & Luke (1986) claimed to be able to determine 
that h(cos 0) reflected an excess of vertically oriented pairs without any knowledge 
of a. Although we have no reason to doubt the validity of Caflisch & Luke’s 
simulations, we question their conclusions concerning the pair probability. Indeed, 
based on the preceding discussion, we believe they should not have obtained any 
non-uniform structure a t  all from their study. 

We have seen that (at least in a random, homogeneous suspension with periodic 
boundary conditions in which the N-particle probability is initially uniform) a non- 
uniform probability density can only arise from those three-particle interactions in 
which a t  least two of the particles are separated by an O(a)  distance. On the other 
hand, encounters in which all three particles are within an O(a) distance are much less 
frequent than those in which an isolated particle interacts with a close pair. Thus, we 
anticipate that the latter type of interaction will yield the largest contribution to the 
pair probability. 

We consider, then, the joint probability n3m(x,r) for finding a close pair of 
particles, whose relative position r has an O(a)  magnitude, a t  a position x relative to 
a third, distant particle, i.e. x % a. The probability density for finding three particles 
none of which are close to one another is n3. As a result, we have limT+m m(x,  r )  = 1. 
In addition, the probability density of finding a close pair at a distance x from the 
third particle that is too great for the third partJicle to have affected the motion of 
the pair is n3Q(r), so that limz+m m(x,  r )  = Q(r ) .  Here, n2Q(r) is the probability 
density of close pairs. 

Neglecting the effects of interactions between four or more particles, the 
probability density m(x ,  r )  satisfies a conservation equation of the form 

am 
-+V.(VPm)+Vr. (Pm)  at = 0, 

where P is the relative velocity between the close pairs of particles and V is the 
velocity of the pair relative to the distant, third particle, and V and V, are the Nab16 
operators with the derivatives taken with respect to x and r ,  respectively. It will be 
seen that the neglect of interactions between four or more particles is only justified 
for x 4 a#-’. For larger separations x = O(a#-l), the surrounding particles in the 
suspension will lead to a significant screening of the velocity disturbance caused by 
the distant particle, and will also lead to  a significant relative motion of the close 
pair. Thus, a t  present, we shall restrict our attention to predicting the probability 
density for separations a + x 4 a#-l. 

When x % a ,  the relative velocity V P  between the close pair and the third particle 
is approximately equal to the difference in their settling velocities in a quiescent, 
unbounded fluid, i.e. 

(3.3) V = (F-1) US+GUS-E r2 ’ 
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where F + G and F are inverse resistance coefficients for the motion of two identical 
particles parallel and perpendicular to their line of centres, respectively (Batchelor 
1972; Stimson & Jeffery 1926; Goldman, Cox & Brenner 1966). F and G are functions 
of r and are always positive. 

The relative velocity 3 between the two particles comprising the close pair is 
caused by the fluid velocity disturbance induced by the third particle. When the 
third particle is a t  a distance a$-, % x 9 a ,  its fluid velocity disturbance may be 
approximated as that due to a Stokeslet, and, furthermore, i t  is approximately a 
linear shear flow on the scale of the close pair separation r.  The relative velocity is 
then (Batchelor & Green 1972): 

(3.4a) 

where E = [VU’ + V@], (3.4b) 

A and B are positive functions of r tabulated by Batchelor & Green (1972), and 
A > I3 for all r .  Another useful relation is 

where W = r(dA/dr)+2 (A-B) is tabulated by Batchelor (1977) and is always 
positive. The velocity us due to a Stokeslet satisfies the equations (Saffman 1973) 

-pv2us+vp = f s ( x ) ,  ( 3 . 6 ~ )  

v*us = 0. (3.6b) 

The solution of (3.6) in Fourier space is 

Three-particle interactions affect the pair probability in two ways. First, a close 
pair of particles only undergoes relative motion under the influence of the shearing 
motion induced by a third particle. Thus, the probability that two particles are at a 
specified relative position of O(a) magnitude is determined by the previous three- 
particle encounters experienced by the pair. This effect, treated in $3.2, leads to a 
short-range structure of the pair probability g(r2 Ir,) that decays like na6x+ as 
a / x  +a. Here, x = Ir, - rl(. Because this structure decays more rapidly than a3xP3 as 
x/a+co, it cannot lead to a Debye-like screening of the velocity disturbance, cf. 
(2.14). The second way in which three-particle interactions affect the pair probability 
is through the influence of a third particle that is currently within an O(a) distance 
of either the one at  rz or a t  rl. Although the latter effect makes a small O(nq5) change 
in the pair probability, i t  will be seen in $3.1 that this change decays very slowly (like 
a / x )  with radial separation, and can thus lead to Debye-like screening. 

It is necessary to relate the pair probability g to the probability density m for 
groups of three particles. If we had an exact expression for the three-particle 
probability P3(rl, r2, r3), then the relation 

10-2 
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would yield an exact result for the pair probability. However, as noted by Rallison 
& Hinch (1986), an 0(1) estimate for P3 in (3.8), for example P3 x n3m, does not yield 
an O(1) estimate for g. The difficulty is that using (3.8) with the estimate of the three- 
particle probability prescribed above only takes account of the effect of the third 
particle on the pair probability. The pair probability is actually affected by the 
presence of all the other N-2 particles in the suspcnsion. 

To take account of the effects of all N-2 other particles, it is necessary to relate the 
pair probability to  the N-particle probability, i.e. 

An estimate for the N-particle probability density, that takes account of the 
variation of the probability density from its random value N!/VN when any of one 
of the N-2 other spheres are near either the one at  r2 or the one at  r l ,  is 

P N ( C N )  = n2SZ(r2-rl)PN(CN I r l r  r 2 )  

N 

+ 

xPN(cNlrl>rZ>ri)+-.. > (3.10) 

where m’(rj-rk, r5-rk)  = m-SZ(ri-rk). The terms omitted from (3.10) involve 
correlations between the positions of four or more particles. The order of the 
arguments of m’ is important. The second argument of m’ represents the relative 
position of the two particles constituting the close pair, while the first represents the 
separation of the close pair from the distant third particle. Thus, the three terms in 
the square brackets in (3.10) take account of the situations in which particle 2 ,  
particle i ,  and particle 1 are the ‘third ’ distant particle, respectively. Substituting 
(3.10) into (3.9) and taking the limit N+co with N/V = n fixed, the pair probability 
is given by 

g(r,l r I )  = nSZ(r2-r,)+2n2 dr3m’(r2-r l , r3-r2)+n2 dr3m’(rl-r3,r2-r l ) .  s s (3.11) 

The first term on the right-hand side of (3.11) is the O(n)  contribution to the pair 
probability resulting from configurations in which no third particle is close to either 
of the particles in the pair. It will be seen in 53.2 that this contribution asymptotes 
to a constant SZ + 1 a t  separations large compared to  a. The second term represents 
the influence on the pair probability of a third particle that is currently within an 
O(a) distance of one of the members of a pair. This term is only O(n$) but decays 
slowly with radial separation x, giving the long-range structure of the pair 
probability investigated in 53.1. The third term representing the effect of a third 
particle on a close pair, for which 2 = O(a) ,  is both small, O(n$),  in magnitude and 
short range, and thus is of little interest. 

n3[m’(r, - r2,  rl -ri) + m’(ri - r l ,  r2 - r i )  + m’(rl -r i ,  r2 -rl)] 
i -3  

3.1. Long-range structure 

In this subsection, we examine the long-range structure of the pair probability that 
results from the net change in the number density of pairs of particles near any given 
particle. When a pair of particles falls into the region surrounding an isolated 
particle, the pair’s relative position is influenced by the fluid velocity disturbance 
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caused by the isolated particle. This velocity disturbance, which satisfies (3.6), 
decays like x-', with the separation x of the pair from the isolated particle. The 
relative velocity of the pair decays like x - ~ ,  being proportional to the gradient of the 
fluid velocity disturbance, cf. (3.4). The change in the pair density is related to an 
integral along the pair's trajectory in x of the divergence with respect to r of the 
relative velocity, cf. (3.2), and, thus, this change in pair density decays like x-l. 
Because the number density of particles that are within an O(a) distance of another 
particle is small, O(n$) ,  the change in the number density of pairs of particles near 
the isolated particle yields an O(n$ax-l) change in the pair density g(x 10). Although 
this contribution to the pair probability is small everywhere in a dilute suspension, 
i t  will represent an O(1) net change in the number of neighbouring particles, thus 
affecting the conditionally averaged fluid velocity disturbance caused by a particle, 
at a radial distance x = O(a$-'), cf. (2.14). 

In Q 3.1.1, we shall study the structure of the pair probability at radial separations 
a 4 x 4 a@-'. For separations in this range, the pair probability is determined by 
three-particle interactions. It will be seen that there is a net deficit of neighbouring 
particlcs at distances a 4 x < a$-'. This suggests that the velocity disturbance will 
be screened at  a radial separation x = O(a$-l) at which many-particle interactions 
become important. In 53.1.2, we show how the coupling between the pair probability 
and the velocity disturbance can lead to screening a t  x = O(a@-'). 

3.1.1. The pair probability at separations a 4 x 4 a$-' 

In order to test for the possibility that the structure of the pair probability 
represents a long-range deficit of neighbouring particles sufficient to give a Debye- 
like screening of the velocity disturbance, we shall calculate the change in the 
number of particles within a sphere of radius R of a given particle. This net change, 
which will be denoted by H ,  is given by 

(3.12) 

where p ( x l 0 )  = g(xIO)-n. We shall determine H for spheres of radii R, where 
a < R 4 a$-'. On this lengthscale the effect of the particle density change on the 
velocity disturbance may be neglected and the preceding development of three- 
particle interactions is valid. If H is negative on such a lengthscale, screening may 
be anticipated a t  a larger O(a$-l) radial distance. 

Equation (3.12) may be written in terms of a volume integral over all space using 
the ' ball ' function 17(x/2R) of Bracewell (1978) to give 

(3.13) 

where n ( x / u t )  is 1 for x < R and 0 otherwise. Using the convolution theorem, (3.13) 

H = dkf i (  -k)F(k), (3.14) 
may be written as I 
where the Fourier transform of the ball function is (Bracewell 1978) : 

(3.15) 
sin (27ckR) - 2nkr cos (2xkR) 

2x2 k3 R3 
f i (k)  = 



288 D. L.  Koch and E .  S. G. Shaqfeh 

Because we are interested in the long-range structure, and the change m' = m-O(r )  
in the pair density decays like a lx ,  we may approximate (3.3) at  steady state, 
neglecting terms smaller than a2x-2, as 

V - V m '  = -V,. [iSZ(r)]. (3.16) 

Equation (3.16) may be solved upon Fourier transforming in x to give 

v,. [ik?(r)l. (3.17) 
1 

2xik. Lp' 
&'(k, r )  = - 

For simplicity we shall consider the case in which the close pair probability is 
random with uniform probability, i.e. Q ( r )  = 1. The resulting calculation will show 
that there is a long-range deficit of particles under this condition. Using (3.1 l ) ,  (3.15), 
and (3.17), the expression (3.14) for the net change H in the number particles within 
a spherical volume of radius R near a given particle is given by 

(3.18) 

where Sk3 is the unit vector in the direction of the gravitational acceleration. The 
integral with respect to k in (3.18) may be evaluated, using the relations 

(3.19a) 

to give 

(3.20) 

I n  (3.19), 0 and @ are the angular coordinates in a spherical coordinate system in 
Fourier space. The integrals in (3.19) contain a factor (Qk1) - l ,  and thus appear 
superficially to be conditionally convergent. However, the Fourier transform 
(Q k1)-l is a generalized function and its integral is defined to  be the Cauchy principle 
value (Lighthill 1980). The use of generalized functions may be avoided by solving 
(3.16) in real space using Lagrangian coordinates. 

Substituting (3.3) for the relative velocity and integrating over the angular 
coordinates in r ,  (3.20) becomes 

H = -  4nn2fR2JI r2dr7 :[ b2-(b3+b)  tan-'(b-l) 

3 P P  

b4(F'+G)'( 3G + - - 3Gb ) tan-' (b-') - F")] ,  - (3.21) 
b2+ 1 + F ' 3  

where b2 e F2/ (G2+2FG) ,  F = F -  1 ,  and F + G  and F are inverse resistance 
coefficients, cf. (3.3). The integrand in (3.21) is positive over the entire range 
f < (G/F ' )  d 1 of variation of the ratio GIF' with changing r .  Thus, H is negative, 
indicating that there is a net deficit of particles near any given particle. 

Figure 2 illustrates the physical mechanism leading to  the computed deficit of 
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FIGURE 2. The physical mechanism leading to a deficit of close pairs near any given third particle 
is illustrated. At each position of the close pair relative to the third particle, the extensional 
component of the velocity disturbance caused by the third particle is illustrated. The pair 
probability is largest in each case along the compressional axis. The excess of relatively slowly 
sedimenting horizontal pairs above and rapidly sedimenting vertical pairs below the third particle 
leads t o  a net deficit of particles in the neighbourhood of the third particle. 

neighbouring particles. The velocity disturbance caused by the third particle is 
approximately a Stokeslet in the vicinity of the close pair. We are interested in the 
first effects of a weak velocity disturbance on a pair passing a large distance from the 
third particle. It is the extensional component of the Stokeslet that determines this 
small change in the pair probability. The principle axis of extension is always parallel 
the radial separation vector x, but the flow is converging above the Stokeslet and 
diverging below. Pairs of particles in an extensional flow are drawn together along 
the compressional axis and pulled apart along the extensional axis. However, as 
Batchelor (1977) noted in his study of the extensional viscosity of suspensions, the 
divergence of the relative velocity is negative in the compressional quadrant and 
positive in the extensional quadrant, corresponding to an apparent source of particle 
density in the compressional quadrant and a sink in the extensional quadrant. This 
leads to an increased pair density in the compressional quadrant in both the steady- 
state shearing of a Brownian suspension studied by Batchelor (1977) and the 
transient shearing of non-Brownian particles treated above, (The steady shearing of 
non-Brownian particles leads to an isotropic pair probability with an excess of close 
pairs.) The Stokeslet velocity disturbance leads, therefore, to an excess of horizontal 
pairs above and an excess of vertical particles below the third particle. The 
horizontal pairs above sediment less rapidly than the vertical pairs below, leading to 
a net deficit of pairs of particles near any given particle. 

Evaluating the integral in (3.21) by numerical quadrature, using cubic spline 
interpolations of the values tabulated by Batchelor (1977) for W and by Goldman 
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et al. (1966) for the inverse resistance coefficients F i- G and F ,  we find the net deficit 
of particles within a radius R to be 

H = -11 .1  q52R2/a2. (3.22) 

The description of particle interactions used in this subsection and, thus, (3.22) are 
valid for radial distances a < R < a4-'. 

In  this subsection, we have shown that there is a long-range particle deficit, when 
the close particle pair probability is uniform, 0 = 1 .  This calculation suggests that 
such a deficit will exist in the actual suspension. However, it  does not preclude the 
possibility that  a structure in the close pair probability could develop for which there 
is an excess rather than a deficit of neighbouring particles. If such an excess did 
develop, it would be expected to lead to an instability of the type described in Koch 
& Shaqfeh (1989) for sedimenting spheroids. In  the following analysis, we shall 
develop a self-consistent theory for the screening of the particle velocity disturbance 
due to a deficit of neighbouring particles. 

3.1.2. Screening of the velocity disturbance at O(a9-l)  radial separations 
The particle deficit within a sphere of radius R becomes 0(1), when R = O(a&'). 

A t  this radial separation one can no longer treat three interacting particles as if they 
were surrounded by a quiescent, pure fluid. One change in the preceding analysis 
that needs to be made to treat three-particle interactions when x = O(aq5-') is to 
replace the velocity disturbance of an isolated Stokeslet (3.6) with the averaged 
velocity (u) , (x  10) conditioned to a particle fixed a t  the origin. This conditionally 
averaged velocity satisfies (2.4). The conditionally averaged velocity is affected not 
only by the downward gravitational force acting on the particle at the origin but also 
by the upward buoyancy force caused by the particle deficit in the surrounding 
suspension. Thus, a t  x = O(a$-'), the conditionally averaged velocity disturbance 
seen by a pair of particles decreases and so the deficit in the pair probability begins 
to decrease. It will be shown that this coupling between the conditionally averaged 
velocity and the pair probability will lead to a net deficit of one particle and a 
screening of the velocity disturbance. 

In  addition, the presence of many intervening particles changes the nature of the 
relative trajectories of the three particles. At separations x = O(aq5-'), the relative 
velocity between the close pair and the third particle are changed by an O ( V )  
amount due to interactions with the other particles in the suspensions. Since the 
velocity in the suspension remains correlated over an O(a4-l)  distance, the motion 
of particles on lengthscales larger than a#-' may be described by an effective 
diffusivity tensor. An exact description of the relative motion on lengthscales of 
O(a$-l) would require a non-local diffusivity tensor (cf. Koch & Brady 1987) that is 
a function of relative position and the direction of gravity. In  this section, we shall 
adopt a simpler model, in which the relative motion of the close pair and the third 
particle induced by the other particles in the suspension is described by a constant 
isotropic diffusivity whose value will be calculated in a self-consistent manner. Even 
for this relatively simple model the analysis of the flow is quite involved. 

Thus, we want to solve (2.10) and (3.11) for the conditional-average velocity 
disturbance and the pair probability self-consistently. At large separations, x 9 a ,  
p in (3.11) is well approximated by the most slowly decaying contribution, i.e. 

p = 2n2 dtm'(x, t) .  (3.23) s 
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The three-particle probability is given by (3 .16)  with an additional term describing 
the relative diffusion between the close pair and third particle induced by the other 
particles, i.e. 

V - V m ' -  W V 2 M  = - v ; [ ~ Q ( r ) ] ,  (3.24) 

where D is the effective diffusivity of an isolated particle. In  writing (3 .24) ,  we have 
taken the diffusivity of the close pair to be the same as that of an isolated particle 
and we have neglected any correlation between the diffusive motions of the close pair 
and the third particle. The solution of (3.24) upon Fourier transforming in x is 

w,. [ h ( r ) l .  
1 

2xik- V + 8x2 Dk2 
# (k ,  r )  = - (3.25) 

I n  (3.24) and (3 .25) ,  the relative velocity of the close pair i is that caused by a 
partially screened Stokeslet rather than the 'unscreened ' Stokeslet used in $3.1.1.  In  
other words, us in (3 .4)  and (3.5) is replaced by (u ) , .  Substituting (2.10) and (3 .5)  into 
(3.25) and restricting our attention a t  present to the case in which there is no short- 
range structure, i.e. SZ = 1, we obtain 

" I  kV: (1- k k / k 2 ) ) :  (rr /r2)  W( 1 + b )  m = -  
(k  - V - 4 ~ i D k ~ ) ( 2 x k ) ~ p  

Substituting (3.26) into (3.23) and solving for b,  one obtains 

- p - 2  a $  2 ' = ( 2 ~ k ) ~ + p a - ~ $ ~ '  
where 

(3.26) 

(3.27) 

(3 .28)  

and we have non-dimensionalized r with a and V with Us. An expression for the 
conditional-average velocity disturbance can be obtained by substituting (3.27) into 
(2.10) to give 

(3 .29)  

The variance of the velocity in the suspension is given by (2.13),  which upon 
substitution from (3 .27) ,  becomes 

( u 2 )  = n dk (f* (I- k k / k 2 ) ) 2  (2/3(k) $2 + ( 2 ~ k ) ~ )  (3 .30)  5 ~ ~ [ ( 2 x k ) ~  + /?(k)  [ ( 2 7 ~ k ) ~  +/?( -k) a-2 $2] ' 

The screening of the velocity field in (3.29) and the pair probability disturbance in 
(3 .27)  occur because of the terms in the denominators of these expressions. 
For wavenumbers k 9 a-1$, corresponding to  radial separations x -4 a$-', the 
viscous terms ( 2 7 ~ k ) ~  in the denominators of (3.27) and (3.29) dominate. Thus, a t  
distances shorter than the screening length u$-', the velocity and pair probability 
disturbances decay like l / r  (or i l k 2  in Fourier space). At larger separations x 9 a#-', 
corresponding to  smaller wavenumbers, the terms pa-2$2, arising from the particle 
deficit dominate in the denominators of (3.27) and (3.29).  As a result the velocity and 
pair probability disturbances are screened at separations larger than the screening 
length. 
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Upon substituting for the relative velocity from (3.3) and using the definitions 
k , / k  = cos 0, ri k i / r k  = cos @’, and r , / r  = cos 0 cos @’+ sin 0 sin 0‘ cos #, (3.28) 
becomes 

where 
G sin 0 cos @‘sin 0’ 

g =  
F cos 0+ G cos 0 COS’ 0’-2iKD/U” 

( 3 . 3 1 ~ )  

(3.31b) 

and K = 2xk. The integral over the angle @ in (3.31) can be evaluated by contour 
integration in the complex plane. This is accomplished by introducing a change of 
variables z = ei4 and integrating over the unit circle in the complex plane for z .  The 
result of this integration is 

where H ( z )  is the Heaviside step function and z+  = - l/rrf ( 1  - a2)f/g. The function 
/3 can be evaluated for any particular value of the Fourier space coordinates, 0 and 
K ,  and the diffusivity D by two simultaneous numerical quadratures. 

To complete the theoretical description, we must adopt a self-consistent 
approximation for the effective diffusivity D. The diffusivity tensor is given by a time 
integral of the correlation function for the particle’s velocity U,  i.c. 

D = J:d7(U’(t+7) U ’ ( t ) ) ,  (3.33) 

where U’ = U -  Us. The particle velocity fluctuation U’ results from the velocity 
disturbances caused by the surrounding particles, i.e. (u ) ,  (x I r l ) .  The test particle 
a t  x samples variations in the velocity disturbance caused by a second particle a t  r l ,  
due to the relative motion induced by the surrounding particles. In keeping with our 
simplified description of this process we shall treat this sampling as if the two 
particles diffuse independently with a local isotropic diffusivity . An approximation 
to the diffusivity that neglects non-local and anisotropic effects as well as the 
correlations bctween particle positions and velocities is 

3 0  = 72 dr, dx’ d7P(x ,  t + 7 I x’, t )  ( u), (x  I rl) * (u),(x’ I rl), (3.34) 

where the transition probability P ( x ,  t +  7 I x’, t )  for the relative position of the two 
particles satisfies the equation 

s I I: 
ap 
-- 2DV2 P = S(X - x’) 4 7 ) .  a7 (3.35) 

Solving (3.35) after integrating with respect to 7 and Fourier transforming with 
respect to x-x‘, substituting the result into (3.34), and using the product and 
convolution theorems gives 

(3.36) 

An examination of (3.28) indicates that the real part of /3 (denoted PR) is an even 
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function of k, while the imaginary part of P (denoted PI) is odd. As a result, the 
integrand in (3.36) is real. Integrating (3.36) over the meriodonal angle in the 
spherical coordinate system in Fourier space gives 

(3.37) 

where K = 2xka#-' and x = cos0 .  The integrand in (3.37) has an integrable 
singularity a t  K = 0 and x = 1. It was possible to integrate the singular part of the 
integral in (3.37) with respect to K analytically by contour integration in the complex 
plane. This integration yielded an integral in x that was also singular. Integrating the 
singular part of the latter integral analytically, we obtained 

D2 = (USa#-')2(d2+d,,+d,2),  
where 

( 3 . 3 8 ~ )  

d , ,  = 9x/(32a!) ,  ( 3 . 3 8 ~ )  

(3.38d) 

and where PRO and PI0, the asymptotic behaviour of the real and imaginary parts of 
P respectively in the dual limit K + 0 and x + 1, are given by 

PRO = a1(1-x2), PI, = YK = K~,D(l-X'). (3.38e, f )  
The constants, a1 = 11.3 and a2 = 159, were determined by an analytic integration 
with respect to 0' and a numerical integration with respect to r of the asymptotic 
behaviour of /3 obtained from (3.32).  Note that (3.38) is an implicit equation for D ,  
since P depends on D .  Thus, to determine D, we performed a numerical quadrature 
of (3.383), which in turn required a numerical quadrature of (3.32) to determine P at  
each step. We also performed the numerical integration of (3.38d).  We then solved 
(3.38) iteratively repeating the numerical integrations at  each step. This gave the 
result 

D = 0.52 Pa$-'. (3.39) 

Thereafter, we completed the numerical integration of (3.30) with (3.32) and found 
the variance of the velocity to be 

(u2) = 4.7 u s 2 .  (3.40) 

Note that the variance is O( V') even though the volume fraction of particles is very 
small. This results from the long range of the velocity disturbance caused by each 
particle. The velocity at a given point in space is affected by the 0(#-2) particles 
within a screening length of that point - each particle making an O(US2a2/x2) = 
0(V2 @) contribution to the variance. 

3.2. Sbrt-range structure 
In addition to the long-range structure investigated in the preceding section, three- 
particle interactions also cause a short-range structure to the pair probability on an 
O(a) lengthscale. Although the long-range structure has a profound influence on the 
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suspension properties, it would be difficult to observe directly because it represents 
only an O(nq5) change in the pair probability. The short-range structure of the pair 
probability represents an O(n)  change from its random value, so it may be more 
easily observed. 

As a close pair of part,icles sediments, it encounters many isolated particles whose 
velocity disturbances lead to a relative motion of the pair. It will be assumed subject 
to a posteriori justification that the largest effect on the close pair probability comes 
from third particles that  are a distance large compared to a from the pair. 

In order to derive an equation for the evolution of the probability density 
n2Q(r,-r,) for finding two particles at positions r, and r2 separated by a distance 
lrl-r2 I = O(a) ,  we start from the conservation equation (3.1) for the N-particle 
probability density. An estimate for the N-particle probability density for cases 
where lrl-r21 = O(a) ,  which takes account of the effects of interactions of the close 
pair with distant third particles is, cf. (3.10), 

i - 3  

Substituting (3.41) into (3.1), integrating over the coordinates x3 to x,, and applying 
the divergence theorem and the condition of no particle flux through the boundaries 
of the volume V gives 

(3.42) 

The analysis in this subsection of the factors controlling the relative position of a 
close pair in a sedimenting suspensions bears significant similarities to the analysis 
in Shaqfeh & Koch (1988) of the orientation of non-spherical particles flowing 
through a fixed bed. Here the relative position r plays a role analogous to the particle 
orientation in the aforementioned analysis. It was shown in Shaqfeh & Koch (1988) 
that the effects of the velocity fluctuations in a fixed bed on the particle orientation 
could be expressed in terms of an effective rotary diffusivity and a rotational drift 
velocity. Similarly, it will now be seen that the effect of the velocity disturbance 
caused by distant particles in a sedimenting suspension is to give rise to an effective 
relative diffusion tensor and a relative drift velocity of a close pair of sedimenting 
particles. 

The first term in the integrand in (3.42) integrates to zero because the relative 
velocity of the close pair is an odd function of the separation from the third particle. 
In other words, the mean relative velocity of the pair due to all the other particles 
in the suspension is zero. This is a consequence of the absence of an average shear flow 
in the suspension. 

It will be seen that the largest contribution to the flux in (3.42) arises from distant 
third particles, i.e. those for which x 9 a. Equation (3.16) may be solved to give an 
expression for m‘ valid when x 9 a ,  

1 
m’(x, I) = @lrn dy’ V; [P(x’, r )  Q ( r ) ] ,  (3.43) 

where 7 is a coordinate measured along the direction parallel to the velocity 4Y of the 
pair relative to  the third particle. Equation (3.43) is simply the inverse Fourier 
transform of (3.17). 
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Substituting (3.43) into (3.42), the equation for the pair probability is 

(3.44a) 

where the effective relative diffusivity dh and the relative drift velocity Ph for the pair 
are given by 

(3.443) 

ag 
-+V,.[P”-dd”.V,SZ] = 0, 
at 

and (3.44c) 

Equation (3.44b) indicates that the effective relative diffusion tensor for the pair is 
given by the integral of the relative velocity correlation function along the pair’s 
trajectory. The drift velocity in ( 3 . 4 4 ~ )  is related to the correlation of the pair’s 
relative velocity with the dilatation of the relative velocity experienced along the 
trajectory. 

Substituting (3.4) and (3.5) for the relative velocity and its divergence, (3.44b, c) 
may be written as 

rl r m  r n  
(1 -9) 6,, rn + ( B - A )  --$cYLn r2 r-1, (3.453) 

where 

(3.45c) 

The fourth-order tensor Ajkmn is the integral over the pair’s trajectory of the self- 
correlation of the gradient of the velocity disturbance caused by the third particle. 
A similar velocity gradient correlation function was obtained by Shaqfeh & Koch 
(1988) in a study of particle orientation in flows through fixed beds. The Ajkmn 
obtained here differs slightly from that of Shaqfeh & Koch (1988), because here the 
integral is carried out along a trajectory which depends on the pair’s relative 
position. 

The velocity gradient correlation has the symmetry Alkmn = Amnjk.  This symmetry 
may be noted by using the convolution theorem to rewrite (3 .45~)  in terms of an 
integral in Fourier space, cf. equation (39) of Shaqfeh & Koch (1988). Using the 
symmetry Ajkmn = Amnjk,  ( 3 . 4 5 ~ )  may be integrated by parts to give 

(3.46) 

where p is the two-dimensional position vector in the plane perpendicular to the 
relative velocity Ur. Applying the convolution theorem, (3.46) becomes 

(3.47) 
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where 5 is the transform variable in the plane perpendicular to W ,  i.e. 

after some rearrangement, 
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= (aij- 
U;/W2) kj. Substituting (3.7) for the velocity disturbance in (3.47) one obtains, 

where Ek = tk/& @ is the angle between tk and an arbitrary vector in the plane 
perpendicular to Ur. The integral with respect to 6 in (3.48) should range over the 
entire plane, i.e. 0 < 6 < 00. However, this integral is conditionally convergent in the 
limits t + O  and 6 - f ~ .  It should be recalled that the approximate equation (3.16) 
used to find the three-particle probability, and the approximate expression (3.7) for 
the relative velocity are only valid a t  radial separations a + x < a$-l, corresponding 
to wavenumbers in the range $a-' Q 6 Q a-l. The conditional convergence in the 
limit c+m (x + 0) results from our approximation of the velocity disturbance caused 
by the third particle as a Stokeslet. The actual velocity gradients in (3.47) are well 
behaved a t  distances x = O(a), and the contributions to Ajkmn from this region are 
O($uS/a).  The conditional convergence in the limit 6+O(x+00) arises because we 
have used the unscreened velocity disturbance (3.7) caused by the third particle. In  
$3.1 it was seen that the velocity disturbance caused by a particle is affected by the 
deficit of surrounding particles a t  a distance x = O(a$-I). Provided that this deficit 
results in a smooth transition from the O(USax-') decay of the velocity disturbance 
with radial distance when x 4a4-I to a more rapid decay when x>a$- l ,  the 
contributions to AIkmn arising from distances x: 2 O(aq5-l) will be O(q5USIa). The 
dominant O[$Us(ln $-')/a] contribution to Ajkmn will then arise from intermediate 
radial distances. This contribution is given by (3.48). 

Expressions for the drift velocity and the effective diffusivity tensor may be 
obtained by integrating (3.48). However, the analysis is very complicated. Here, in 
order to  obtain a qualitative picture of the effects of three-particle interactions on the 
pair probability we shall make the following simplification. We shall consider cases 
in which the velocity of the pair relative to the third particle is in the vertical 
direction. This situation arises in a suspension of sedimenting particles when the pair 
is oriented either parallel or perpendicular to gravity. The approximation that the 
relative velocity is in the vertical direction is expected to give the correct qualitative 
behaviour for a pair of sedimenting spheres, since their velocity relative to a third 
particle is never more than about 18" from the direction of the gravitational 
acceleration. 

When the relative velocity is parallel to the gravitational acceleration the integral 
in (3.48) may be performed to give, cf. (45) of Shaqfeh & Koch (1988), 

(3.49) 

Substituting (3.49) into the expression ( 3 . 4 5 ~ )  for the drift velocity and evaluating 
the r- and @-components, one obtains 

In q5-l Wr cos 0 sin 0[1-$+ (B-  1) cos2 01. 27#uS2 
4 v  

;; = ~ (3.50 b)  
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FIQURE 3. The drift velocity vector P is plotted for various relative positions r .  The scale is 
indicated by the arrow at the upper right of the figure which denotes a vector of magnitude 27@ls2a 
In @'/4cP. Here, r is non-dimensionalized with a. 

The drift velocity vector as a function of relative position is illustrated in figure 3. 
The drift velocity goes to zero at vertical and horizontal relative positions. Since A 
is less than 1 for all values of r ,  the radial component of the drift is always inward. 
B takes on values between 0 and 0.4060 (Batchelor & Green 1972), so the angular 
component of the drift is in the positive (negative) @-direction when the angle 0 
between the separation vector and the gravitational acceleration is less (greater) than 
in. Thus, the radial component of the drift velocity favours close pairs and the 
angular component tends to form horizontal pairs. 

The relative diffusion tensor obtained by substituting (3.49) into (3.45b) is 

+ill2 a' r2 Si, + rSi r,[(B--A)2 a2( 1 -a2) -B(B-A)  a2] 

+ (rri S,, + S,, rr,)[  ( 1 - @) (I3 - A)(a  - 0 1 ~ )  - $( 1 - 9) 01 + @(B - A )  a3]} ,  (3.51) 

where a = cos0. The relative diffusion tensor grows like r3 as r /a+&,  because the 
relative velocity between the two particles constituting the pair grows like r and the 
velocity of the pair relative to the third particle decays like r-l. It should be recalled, 
however, that  the description adopted for the three-particle interactions here is 
only valid when the close pair are separated by an O(a) distance. At larger 
separations, the relative velocity between the particles will be different from the 
values given by (3.3) and (3.4). For r % R,, the pair diffusivity will asymptote to twice 
the single-particle tracer diffusivity, whose magnitude is estimated in (3.39). 

Note that the drift velocity is non-zero only for small radial separations a t  which 
the relative velocity is not solenoidal. Because the drift velocity involves the 
correlation of the O(r)  relative velocity with the O ( P )  divergence of the velocity 
weighted by the O(r-') inverse of the relative velocity, (CTT)-l, it decays like r-6 as 
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r+m. The term involving the drift velocity in (3.44~) then acts like a compact source 
quadrupole of pairs, particle conservation precluding the presence of a source and the 
evenness of Q(r)  precluding the presence of a dipole of particles. This quadrupole 
leads to a flux - d ” . V , Q  that decays like r-‘. Since the diffusivity grows like r3,  the 
pair probability must decay like r-6 as r +a. This confirms our a priori assumption 
that the O(n)  ‘short-range’ structure of the pair probability decays more rapidly 
than rP3 and thus cannot give rise to screening of the velocity disturbance (cf. (2.14)). 

The assumptions made concerning the pair probability by Caflisch & Luke (1986) 
are a t  variance with the preceding observation. They assumed that the pair 
probability had an O ( n )  structure that extended to  large separations r $= a, and that 
this structure could be studied using the point-particle approximation. It was noted 
above, however, that a random suspension with no structure in the pair probability 
is a solution of the particle conservation equation (3.1) in the point-particle 
approximation. Note also that Caflisch & Luke (1986) suggested that there is an 
excess of vertical pairs, while our calculations indicate an excess of horizontal pairs. 

4. Conclusions 
In this paper we have proposed a mechanism by which the velocity disturbances 

caused by sedimenting particles in suspension may be screened. In  $ 2  we considered 
in detail the calculation of the variance of the fluid velocity in a sedimenting 
suspension. In examining the convergence properties of the velocity variance, it was 
sufficient to use a point-particle approximation, because this approximation captured 
the long-range velocity disturbances. It was shown that the velocity variance is finite 
(i.e. independent of the size of the vessel) if the pair probability exhibits a net deficit 
of one particle in a compact region of space surrounding any given particle, i.e. if it  
satisfies (2.12). If the pair probability does not satisfy (2.12), then the variance of the 
velocity is divergent in the sense that it grows linearly with the linear size of the 
settling vessel. Thus, in a suspension of particles with no inertia the variance can only 
be independent of the size of the settling vessel if (2.12) is satisfied. The results in $ 2  
for the effect of structure on the variance of the fluid velocity apply to sedimenting 
particles of any shape, because the leading contribution to the variance depends only 
on the magnitude of the force of gravity acting on the particle. 

Because it was not immediately obvious whether a structure that satisfies (2.12) 
could develop in a sedimenting suspension, we studied the structure in a 
monodisperse sedimenting suspension of non-Brownian spheres in 9 3. It was 
determined that the pair probability in a sedimenting suspension of spherical 
particles consists of two contributions. (i)  An O(n)  contribution, which goes to a 
constant within an O(a) radial distance. I n  $3.2, it was shown that close pairs with 
their relative position perpendicular to gravity were favoured over close pairs whose 
relative position is parallel to gravity. (ii) In  $ 3.1 three-particle interactions were 
shown to result in an O(nq5) contribution to the pair probability. Despite its small 
magnitude this contribution plays a crucial role in determining the macroscopic 
properties of the suspension. This contribution to the pair probability consists of a 
deficit of particles that decays very slowly (as ax-’) with radial position. This long- 
range deficit of neighbouring particles leads to a screening of a particle’s velocity 
disturbance in a sedimenting suspension in a manner analogous to the Debye 
screening of an ion’s electrical potential in an ionic solution by the surrounding ion 
cloud. Because of its small magnitude the particle deficit can lead to Debye-like 
screening of the velocity disturbance only a t  a large O(aq5-l) radial distance. 
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The Debye-like screening of the velocity disturbance caused by a sedimenting 
particle has important effects on the properties of the suspension, many of which 
would depend on the size of the suspension in the absence of screening. The detailed 
velocity disturbance and pair probability a t  O(a4-l)  radial separations have only 
been calculated through a self-consistent approximation. Nonetheless it is possible to 
make predictions concerning the orders of magnitude of the suspension properties 
based on a knowledge of the screening length, a$-', alone. The simplest measure of 
the fluctuations in the velocities of the particles and fluid in a suspension are the 
variances of the sedimentation velocity and the fluid velocity, respectively. The 
calculation of these velocity variances involves summing the squares of the velocity 
disturbances of all the particles in a suspension. Since the velocity disturbance 
decays as Pax- ' ,  this leads to  a volume integral of a quantity that decays like 
$US2a2x-2, cf. (2.8). I n  general, the order of magnitude of the velocity variances will 
be US2q5R,/a, where R, is the radial distance to which the velocity disturbance caused 
by a particle propagates. In  a random suspension whose pair probability does not 
satisfy (2.12), the integral for the velocity variance only converges when one reaches 
the vessel walls, so R, is the minimum dimension of the settling vessel L and the 
variances are 0(&T2L/a) ,  as predicted for a suspension of uniform probability by 
Caflisch & Luke (1985). It has been seen that a suspension of spherical particles 
develops a structure that can lead to  screening of the velocity disturbance at an 
O(a4-l)  radial distance, leading to O( Us2) velocity variances. 

Attempts to calculate the effective diffusivities of either the sedimenting particles 
or chemical tracers in the fluid phase also lead to divergent integrals. These 
diffusivities are given by time integrals of the particles' velocity correlation 
functions. The order of magnitude of the effective diffusivities may be estimated as 
the product of the variance of the velocity and the correlation time t , ,  i.e. the time 
over which a solid or fluid particle's velocity correlation function decays. The fluid 
velocity will remain correlated for the O(R,/US) time that it takes a particle to  fall 
through the interaction volume of radius R ,  surrounding the fluid particle. Thus, the 
effective diffusivity for a chemical tracer in the fluid phase is O((u2)R,/US) or 
O( Pa$-') .  

To estimate the order of magnitude of the effective tracer diffusivity of a solid 
particle, D ,  we first note that the variance of the solid-particles' velocity (like the 
variance of the fluid velocity) is O(US2). However, the process by which a solid- 
particle's velocity becomes uncorrelated is different from the process by which a 
fluid-particle's velocity becomes uncorrelated. I n  the absence of hydrodynamic 
interactions all of the particles would settle a t  the same speed. Thus, it is necessary 
to  take into account the effects of hydrodynamic interactions with third particles on 
the relative motion of two particles in order to see how they move away from and 
stop influencing one another. To estimate the order of magnitude of the correlation 
time, we treat the effect of these interactions with third particles as an effective 
diffusion and estimate the relative diffusion coefficient as being of the same order of 
magnitude as the solid-particle tracer diffusivity D .  The correlation time is then 
t ,  = O(R:/D).  Solving for the correlation time self-consistently with D = O ( ( V ) t , ) ,  
we obtain D = O((V) iR , )  = O(Pa4- l ) .  Thus, both the fluid-phase and solid-particle 
tracer diffusivities are predicted to grow like Pa#-' as q5 + 0. 

This predicted scaling of the effective diffusivities only holds when the screening 
length a4-l is much smaller than the minimum linear dimension of the settling vessel 
L. If the settling vessel is tall and narrow, then a particle's velocity may become 
uncorrclated before i t  settles out, even when the sidewalls limit the range of the 
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particle interactions. I n  this case, a diffusive behaviour may still be expected. When 
the vessel sidewalls are limiting, the effective diffusivity scales like D = O ( ( V ) t , ) ,  
where (VZ) = O(W2$L/a )  and the correlation time is t, = O(L/Us)  for the fluid-phase 
tracer and t ,  = O(L2/D) for the solid particles. Thus, the effective diffusivity for a 
fluid-phase tracer is O( US$L2/a)  and the solid-particle effective diffusivity is 
O(W&L:/af). In  both cases, the effective diffusivity goes to zero if one takes the limit 
# + O  with the vessel dimension L held fixed. 

Unfortunately, there are no experimental measurements of the variance of either 
the fluid or particle velocities in a sedimenting suspension. Ham & Homsy (1988) 
have obtained experimental values for the effective solid-particle tracer diffusivity in 
a nearly monodisperse sedimenting suspension of spherical particles. The measure- 
ment was taken by following the motion of a single marked particle in the 
suspension. The effective diffusivity was defined in terms of the time rate of change 
of the particle's mean-square displacement. A direct comparison of the present 
theory to these measurements is made uncertain by two factors: (i) the volume 
fraction range 0.0254.1 in the experimcnts may not be sufficiently dilute to exhibit 
the asymptotic behaviour predicted here ; and (ii) the 90 % confidence limits on the 
experimentally measured values of the diffusivity indicated that the diffusivity was 
only known to within about a factor of two. The experimentally measured effective 
diffusivity increased with decreasing volume fraction as the volume fraction was 
varied from 0.1 to 0.08 and 0.05, in qualitative agreement with our prediction 
D = O(Usu$-'). 

When the volume fraction was further decreased to 0.025, the experimental value 
for the effective diffusivity decreased. A possible explanation for this decrease is that  
the settling vessel was not sufficiently large to see the asymptotic value of the 
diffusivity at this lower volume fraction. The observed decrease in the effective 
diffusivity with a decrease in the volume fraction for 0.05 to 0.025 is qualitatively 
consistent with the prediction above for the bchaviour of a suspension in which the 
vessel sidewalls limit the range of the particle interactions. The ratio of the column 
radius to the particle radius in the experiments was L / a  = 100; this was not varied 
significantly in the experiments. The maximum in the experimentally observed 
diffusivity came a t  a volume fraction for which thc length a$-' was smaller than, but 
of the same order of magnitude as, the vessel radius. Our scaling arguments are only 
sufficient to predict that  the maximum in the diffusivity should occur when L / a  is 
of the same order of magnitude as 9-l. A further piece of evidence that would suggest 
that Ham & Homsy's lowest volume fraction results were influenced by the finite 
lateral dimensions of the vessel is the fact that  the distance (denoted H ,  by the 
authors) for the particle's velocity to lose correlation with its initial value was 
comparable with the vessel diameter. 

It has been noted that Batchelor's (1972) calculation of the first correction 
-6.5WW to the mean sedimentation velocity can be expected to apply to a 
suspension of Brownian particles that  possess the uniform pair probability stipulated 
in his calculation but not to a suspension of nowBrownian particles that possess a 
non-uniform structure. The O ( n )  short-range structure of the pair probability 
consisting of an excess of close pairs may be expected to lead to an O($W) increase 
of the average Sedimentation velocity over that  calculated by Batchelor (1972). The 
effect of the long-range structure on the average sedimentation velocity may be 
determined from (2.5). The long-range contribution to  the difference between the pair 
probability and the number density, i.e. g - n ,  is O(n$ar'-') for a < r' < a$-' (cf. the 
discussion at the beginning of 53.1). For r' larger than a$-'. g --n decays more rapidly 
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owing to the screening of velocity and density perturbations. Thus, the integral in 
(2.5) grows like n#USRa with the radial extent H to which the integration is carried 
out until R exceeds a#-’. The integral then converges to an O(uS#) value. The long- 
range deficit, then, is expected to give rise to an O(#uS) decrease in the mean 
sedimentation velocity. Thus, we predict that  the first correction to the average 
settling velocity caused by hydrodynamic interactions in a dilute suspension of non- 
Brownian, sedimenting spheres is O(#uS) as calculated by Batchelor but with a 
different numerical coefficient. It is interesting to note that, if Debye-like screening 
occurred at a smaller radial distance, for example a t  a distance a#-. with 0 < a < 1, 
this first correction would be larger, O(pUs) .  

An unfortunate consequence of the long-range nature of the interparticle 
interactions in a dilute sedimenting suspension is that it would be exceedingly 
difficult to  accurately numerically simulate such a suspension. Since the interactions 
between particles separated by a distance up to  the Debye-like screening length are 
important, one would require a number of particles that  is large compared to #-, to 
perform an accurate numerical simulation of the dynamics of a three-dimensional 
suspension. 

This work was initiated while both authors were visiting DAMTP a t  Cambridge 
University as NATO Postdoctoral Fellows. Discussions with E. J. Hinch were 
helpful in formulating the idea that the conditionally averaged velocity disturbance 
in a sedimenting suspension could be screened. One of the authors (D.L.K.) 
gratefully acknowledges financial support from the donors of the Petroleum 
Research Fund administered by the American Chemical Society and from National 
Science Foundation Grant No. MSME-8857565. 

Appendix : Justification for the neglect of higher-order velocity correlations 
in the expression (2.8) for the velocity variance 

The expression (2.8) used to approximate the variance of the fluid velocity is the 
first term in an asymptotic expansion in the dilute limit for the velocity variance. 
This first term involves the effects of individual particles on the velocity variance, 
while the kth term involves effects of groups of k particles. To produce this expansion 
we can expand the detailed fluid velocity as a sum of the effects of groups of one, two, 
etc. particles, i.e. 

N N 

u(x I c N )  = c ( u ) l ( x  I ‘a) + c 
I-1 i - l f> i  

N 

<u’ )2 (x  I ‘i? ‘ 3 )  

+x x x <u”)3(~~‘~,‘~~Tk)+...+(~N-1)N(X~ c N ) .  (A l )  
a-1 J>i k > J  

Each term in (A 1) represents only the additional effects of a group of k particles that 
cannot be expressed in terms of k- 1 particle correlations. Thus, 

(u‘),(x I ‘6, ‘ I )  = (u>,(x I ‘0 ‘3)  - (u) , (x  I ‘a) - (U)l(X I T,)? (A 2a) 

(u”)3(x I ‘6, ‘3, ‘k) = <u)3@ I ‘$3 ‘j, ‘J - (u’),(x I ‘a, ‘$1 - (u’),(x I ‘a, ‘k) 

- (u’),(x I ‘k, ‘ J )  - (U)l(X I ‘a) - <u),(x I ‘ j )  - (u) , (x  I ‘k)? (A 2b) 

etc. Equation (2.8) is the result obtained for the variance if the expansion (A 1) is 
substituted for the first factor of the velocity u(x  1 CN) in (2.7) and only terms 
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involving the conditional average with one particle fixed are retained. If we 
substitute (A 1 )  for the first factor of the velocity in (2.7) and truncate the expansion 
(A 2) at  the second term, we obtain 

+ dr1 dr2iw(r1 I r2) (U?,(X I r1, t 2 ) ’  (U’>, (X I r1, r2). (A 3) J 
Integrating the second term over the coordinate rl and using the definition of the 
conditional average, (A 3) becomes 

+ Jdr, dr2kw(r11r2) (U?2(X I r1, r2) - < U / ) , ( X  I rl, r2). (A 4) 

The first two terms term in (A 4) were used to obtain the approximate expression 
(2.13) for the variance in $2. It is our purpose here to show that the last term, which 
involves two-particle velocity correlations, is smaller than the O( P 2 )  terms retained 
in the body of the paper. 

To this end, we derive conservation equations of the two-particle velocity 
disturbance (u‘) , (x I rl, r2) .  Such equations may be obtained by taking the 
conditional average of (2.4) with two particle positions fixed and subtracting from i t  
the conditional averages of (2.4) with one particle fixed at  rl and with one particle 
fixed a t  r2, to give 

-PV2<U’),(XI r1>‘2)+v(P’), =flgdxI ~ 1 , ~ 2 ) - g ( ~ I ~ l ) - g ( X l ~ 2 ) + ~ 1 ,  (A 5a)  

v. ( U ’ ) , ( X  1 r,, r2)  = 0. (A 5 b )  

Note that the two-particle velocity correlations in ( A 5 a )  are induced only by 
three-particle position correlations. It was seen in 9 3 that the three-particle 
probability density differs from the sum of the two-particle probabilities only if a t  
least two of the particles are within an O(a) distance, cf. (3.17) and the discussion 
following (3.1). Thus, the right-hand side of (A 4a) and the two-particle velocity 
disturbance ( ~ ‘ ) ~ ( ~ [ r ~ , r , )  are only non-zero when rl and r2 are within an O(a)  
distance of one another. 

We are now ready to estimate the orders of magnitude of the errors, represented by 
the final term in (A 4), incurred by neglecting the two-particle velocity correlations. 
The first of the two spatial integrals in the final term to be performed, the one in rl, 
will converge within an O(a) distance of the point r,, because beyond this distance the 
two-particle velocity disturbance decays to zero. One is then left with an integral 
over r2 of the O ( n 2 )  pair distribution function times the product of the O ( V $ a / r , )  
two-particle velocity disturbance and the O( Usa/r2)  one-particle velocity dis- 
turbance. The two-particle velocity disturbance is driven by the O($) source of 
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momentum in (A 5a) .  The integral with respect to r,  is expectcd to converge at the 
O(R,) radial distance at which thc velocity disturbances are screened. I ts  value is 
then O( US2q53R,/a), and is thus small compared with the O( Us2q5Rs/a) term evaluated 
in $2. In  making the point-particle approximations we have also neglected O( Us,$) 
contributions associated with the finite size of the particles. These finite-size effects 
are larger than any of the contributions arising from two-particle velocity 
correlations. 
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